Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.148
Filtrar
1.
J Ethnopharmacol ; 328: 118108, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38574780

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Polygala fallax Hemsl. is a traditional folk medicine commonly used by ethnic minorities in the Guangxi Zhuang Autonomous Region, and has a traditional application in the treatment of liver disease. Polygala fallax Hemsl. polysaccharides (PFPs) are of interest for their potential health benefits. AIM OF THIS STUDY: This study explored the impact of PFPs on a mouse model of cholestatic liver injury (CLI) induced by alpha-naphthyl isothiocyanate (ANIT), as well as the potential mechanisms. MATERIALS AND METHODS: A mouse CLI model was constructed using ANIT (80 mg/kg) and intervened with different doses of PFPs or ursodeoxycholic acid. Their serum biochemical indices, hepatic oxidative stress indices, and hepatic pathological characteristics were investigated. Then RNA sequencing was performed on liver tissues to identify differentially expressed genes and signaling pathways and to elucidate the mechanism of liver protection by PFPs. Finally, Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were used to verify the differentially expressed genes. RESULTS: Data analyses showed that PFPs reduced the levels of liver function-related biochemical indices, such as ALT, AST, AKP, TBA, DBIL, and TBIL. PFPs up-regulated the activities of SOD and GSH, down-regulated the contents of MDA, inhibited the release of IL-1ß, IL-6, and TNF-α, or promoted IL-10. Pathologic characterization of the liver revealed that PFPs reduced hepatocyte apoptosis or necrosis. The RNA sequencing indicated that the genes with differential expression were primarily enriched for the biosynthesis of primary bile acids, secretion or transportation of bile, the reactive oxygen species in chemical carcinogenesis, and the NF-kappa B signaling pathway. In addition, the results of qRT-PCR and Western blotting analysis were consistent with those of RNA sequencing analysis. CONCLUSIONS: In summary, this study showed that PFPs improved intrahepatic cholestasis and alleviated liver damage through the modulation of primary bile acid production, Control of protein expression related to bile secretion or transportation, decrease in inflammatory reactions, and inhibition of oxidative pressure. As a result, PFPs might offer a hopeful ethnic dietary approach for managing intrahepatic cholestasis.


Asunto(s)
Colestasis Intrahepática , Colestasis , Polygala , Ratas , Ratones , Animales , Ratas Sprague-Dawley , 1-Naftilisotiocianato/toxicidad , China , Hígado/metabolismo , Colestasis/inducido químicamente , Colestasis/tratamiento farmacológico , Colestasis/metabolismo , Colestasis Intrahepática/inducido químicamente , Isotiocianatos/efectos adversos , Isotiocianatos/metabolismo , Ácidos y Sales Biliares/metabolismo
2.
Food Chem Toxicol ; 186: 114571, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38452966

RESUMEN

This study investigated the preventive effect of heat-killed Lactobacillus plantarum (L. plantarum) on cholestasis-induced male reproductive toxicity in rats. Rats were divided into control normal, sham control, bile duct ligation (BDL) control, and BDL with heat-killed L. plantarum supplementation groups. The effects on sexual hormones, testicular and epididymal histology, sperm parameters, oxidative stress markers, and inflammatory gene expression were evaluated. Compared to the BDL control group, the BDL + heat-killed L. plantarum group showed higher levels of normal sperm, luteinizing hormone, testosterone, total antioxidant capacity, and catalase activity, indicating improved reproductive function. Conversely, markers of oxidative stress, such as total oxidative status, oxidative stress index, and carbonyl protein, were lower in the BDL + heat-killed L. plantarum group. The expression levels of inflammatory genes tumor necrosis factor-alpha and interleukin-6 were reduced, while interleukin-10 gene expression was increased in the BDL + heat-killed L. plantarum group. Histological evaluation confirmed the positive effects of heat-killed L. plantarum intervention on testicular parameters. In conclusion, heat-killed L. plantarum supplementation protects against cholestasis-induced male reproductive dysfunction in rats, as evidenced by improvements in hormonal balance, sperm quality, oxidative stress, and inflammation.


Asunto(s)
Colestasis , Lactobacillus plantarum , Ratas , Masculino , Animales , Lactobacillus plantarum/metabolismo , Calor , Semen/metabolismo , Colestasis/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Estrés Oxidativo , Hígado , Ligadura
3.
J Integr Med ; 22(2): 188-198, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38472011

RESUMEN

OBJECTIVE: This study explores the mechanism of action of Danhongqing formula (DHQ), a compound-based Chinese medicine formula, in the treatment of cholestatic liver fibrosis. METHODS: In vivo experiments were conducted using 8-week-old multidrug resistance protein 2 knockout (Mdr2-/-) mice as an animal model of cholestatic liver fibrosis. DHQ was administered orally for 8 weeks, and its impact on cholestatic liver fibrosis was evaluated by assessing liver function, liver histopathology, and the expression of liver fibrosis-related proteins. Real-time polymerase chain reaction, Western blot, immunohistochemistry and other methods were used to observe the effects of DHQ on long non-coding RNA H19 (H19) and signal transducer and activator of transcription 3 (STAT3) phosphorylation in the liver tissue of Mdr2-/- mice. In addition, cholangiocytes and hepatic stellate cells (HSCs) were cultured in vitro to measure the effects of bile acids on cholangiocyte injury and H19 expression. Cholangiocytes overexpressing H19 were constructed, and a conditioned medium containing H19 was collected to measure its effects on STAT3 protein expression and cell activation. The intervention effect of DHQ on these processes was also investigated. HSCs overexpressing H19 were constructed to measure the impact of H19 on cell activation and assess the intervention effect of DHQ. RESULTS: DHQ alleviated liver injury, ductular reaction, and fibrosis in Mdr2-/- mice, and inhibited H19 expression, STAT3 expression and STAT3 phosphorylation. This formula also reduced hydrophobic bile acid-induced cholangiocyte injury and the upregulation of H19, inhibited the activation of HSCs induced by cholangiocyte-derived conditioned medium, and decreased the expression of activation markers in HSCs. The overexpression of H19 in a human HSC line confirmed that H19 promoted STAT3 phosphorylation and HSC activation, and DHQ was able to successfully inhibit these effects. CONCLUSION: DHQ effectively alleviated spontaneous cholestatic liver fibrosis in Mdr2-/- mice by inhibiting H19 upregulation in cholangiocytes and preventing the inhibition of STAT3 phosphorylation in HSC, thereby suppressing cell activation. Please cite this article as: Li M, Zhou Y, Zhu H, Xu LM, Ping J. Danhongqing formula alleviates cholestatic liver fibrosis by downregulating long non-coding RNA H19 derived from cholangiocytes and inhibiting hepatic stellate cell activation. J Integr Med. 2024; 22(2): 188-198.


Asunto(s)
Colestasis , ARN Largo no Codificante , Humanos , Ratones , Animales , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Medios de Cultivo Condicionados/metabolismo , Ratones Noqueados , Colestasis/tratamiento farmacológico , Colestasis/genética , Colestasis/metabolismo , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Hígado/metabolismo
4.
Am J Physiol Gastrointest Liver Physiol ; 326(4): G460-G472, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38440827

RESUMEN

Current therapy for hepatic injury induced by the accumulation of bile acids is limited. Leucine-rich repeat G protein-coupled receptor 4 (LGR4), also known as GPR48, is critical for cytoprotection and cell proliferation. Here, we reported a novel function for the LGR4 in cholestatic liver injury. In the bile duct ligation (BDL)-induced liver injury model, hepatic LGR4 expression was significantly downregulated. Deficiency of LGR4 in hepatocytes (Lgr4LKO) notably decreased BDL-induced liver injury measured by hepatic necrosis, fibrosis, and circulating liver enzymes and total bilirubin. Levels of total bile acids in plasma and liver were markedly reduced in these mice. However, deficiency of LGR4 in macrophages (Lyz2-Lgr4MKO) demonstrated no significant effect on liver injury induced by BDL. Deficiency of LGR4 in hepatocytes significantly attenuated S1PR2 and the phosphorylation of protein kinase B (AKT) induced by BDL. Recombinant Rspo1 and Rspo3 potentiated the taurocholic acid (TCA)-induced upregulation in S1PR2 and phosphorylation of AKT in hepatocytes. Inhibition of S1PR2-AKT signaling by specific AKT or S1PR2 inhibitors blocked the increase of bile acid secretion induced by Rspo1/3 in hepatocytes. Our studies indicate that the R-spondins (Rspos)-LGR4 signaling in hepatocytes aggravates the cholestatic liver injury by potentiating the production of bile acids in a S1PR2-AKT-dependent manner.NEW & NOTEWORTHY Deficiency of LGR4 in hepatocytes alleviates BDL-induced liver injury. LGR4 in macrophages demonstrates no effect on BDL-induced liver injury. Rspos-LGR4 increases bile acid synthesis and transport via potentiating S1PR2-AKT signaling in hepatocytes.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Colestasis , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Hígado/metabolismo , Colestasis/complicaciones , Colestasis/metabolismo , Hepatocitos/metabolismo , Ácidos y Sales Biliares/metabolismo , Conductos Biliares/metabolismo , Ligadura , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
5.
Hepatol Commun ; 8(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38517206

RESUMEN

BACKGROUND: Pediatric cholestatic liver diseases (Ped-CLD) comprise many ultrarare disorders with a genetic basis. Pharmacologic therapy for severe cases of Ped-CLD has not been established. Species differences in bile acid (BA) metabolism between humans and rodents contribute to the lack of phenocopy of patients with Ped-CLD in rodents and hinder the development of therapeutic strategies. We aimed to establish an efficient in vivo system to understand BA-related pathogenesis, such as Ped-CLD. METHODS: We generated mice that express spCas9 specifically in the liver (L-Cas9Tg/Tg [liver-specific Cas9Tg/Tg] mice) and designed recombinant adeno-associated virus serotype 8 encoding small-guide RNA (AAV8 sgRNA) targeting Abcc2, Abcb11, and Cyp2c70. In humans, ABCC2 and ABCB11 deficiencies cause constitutional hyperbilirubinemia and most severe Ped-CLD, respectively. Cyp2c70 encodes an enzyme responsible for the rodent-specific BA profile. Six-week-old L-Cas9Tg/Tg mice were injected with this AAV8 sgRNA and subjected to biochemical and histological analysis. RESULTS: Fourteen days after the injection with AAV8 sgRNA targeting Abcc2, L-Cas9Tg/Tg mice exhibited jaundice and phenocopied patients with ABCC2 deficiency. L-Cas9Tg/Tg mice injected with AAV8 sgRNA targeting Abcb11 showed hepatomegaly and cholestasis without histological evidence of liver injury. Compared to Abcb11 alone, simultaneous injection of AAV8 sgRNA for Abcb11 and Cyp2c70 humanized the BA profile and caused higher transaminase levels and parenchymal necrosis, resembling phenotypes with ABCB11 deficiency. CONCLUSIONS: This study provides proof of concept for efficient in vivo assessment of cholestasis-related genes in humanized bile acid profiles. Our platform offers a more time- and cost-effective alternative to conventional genetically engineered mice, increasing our understanding of BA-related pathogenesis such as Ped-CLD and expanding the potential for translational research.


Asunto(s)
Ácidos y Sales Biliares , Colestasis , Humanos , Ratones , Niño , Animales , Ácidos y Sales Biliares/metabolismo , ARN Guía de Sistemas CRISPR-Cas , Colestasis/metabolismo , Hígado/metabolismo , Fenotipo
6.
Eur J Pharmacol ; 966: 176334, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38286357

RESUMEN

Hyperammonemia refers to elevated levels of ammonia in the blood, which is an important pathological feature of liver cirrhosis and hepatic failure. Preclinical studies suggest tropifexor (TXR), a novel non-bile acid agonist of Farnesoid X Receptor (FXR), has shown promising effects on reducing hepatic steatosis, inflammation, and fibrosis. This study evaluates the impact of TXR on hyperammonemia in a piglet model of cholestasis. We here observed blood ammonia significantly elevated in patients with biliary atresia (BA) and was positively correlated with liver injury. Targeted metabolomics and immunblotting showed glutamine metabolism and urea cycles were impaired in BA patients. Next, we observed that TXR potently suppresses bile duct ligation (BDL)-induced injuries in liver and brain with improving the glutamine metabolism and urea cycles. Within the liver, TXR enhances glutamine metabolism and urea cycles by up-regulation of key regulatory enzymes, including glutamine synthetase (GS), carbamoyl-phosphate synthetase 1 (CPS1), argininosuccinate synthetase (ASS1), argininosuccinate lyase (ASL), and arginase 1 (ARG1). In primary mice hepatocytes, TXR detoxified ammonia via increasing ureagenesis. Mechanically, TXR activating FXR to increase express enzymes that regulating ureagenesis and glutamine synthesis through a transcriptional approach. Together, these results suggest that TXR may have therapeutic implications for hyperammonemic conditions in cholestatic livers.


Asunto(s)
Benzotiazoles , Colestasis , Hiperamonemia , Isoxazoles , Humanos , Porcinos , Ratones , Animales , Glutamina/metabolismo , Amoníaco/metabolismo , Hiperamonemia/tratamiento farmacológico , Hiperamonemia/metabolismo , Hígado/metabolismo , Colestasis/complicaciones , Colestasis/tratamiento farmacológico , Colestasis/metabolismo , Urea/farmacología
7.
Bioorg Chem ; 143: 107071, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199141

RESUMEN

Farnesoid X receptor (FXR) was considered as a promising drug target in the treatment of cholestasis, drug-induced liver injury, and non-alcoholic steatohepatitis (NASH). However, the existing FXR agonists have shown different degrees of side effects in clinical trials without clear interpretation. MET-409 in clinical phase Ⅲ, has been proven significantly fewer side effects than that of other FXR agonists. This may be due to the completely different structure of FEX and other non-steroidal FXR agonists. Herein, the structure-based drug design was carried out based on FEX, and the more active FXR agonist LH10 (FEX EC50 = 0,3 µM; LH10 EC50 = 0.14 µM)) was screened out by the comprehensive SAR studies. Furthermore, LH10 exhibited robust hepatoprotective activity on the ANIT-induced cholestatic model and APAP-induced acute liver injury model, which was even better than positive control OCA. In the nonalcoholic steatohepatitis (NASH) model, LH10 significantly improved the pathological characteristics of NASH by regulating several major pathways including lipid metabolism, inflammation, oxidative stress, and fibrosis. With the above attractive results, LH10 is worthy of further evaluation as a novel agent for the treatment of liver disorders.


Asunto(s)
Colestasis , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptores Citoplasmáticos y Nucleares , Hígado/metabolismo , Derivados del Benceno/farmacología , Colestasis/metabolismo , Colestasis/patología
8.
Clin Mol Hepatol ; 30(2): 206-224, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38190829

RESUMEN

BACKGROUND/AIMS: Cholestatic liver diseases including primary biliary cholangitis (PBC) are associated with active hepatic fibrogenesis, which ultimately progresses to cirrhosis. Activated hepatic stellate cells (HSCs) are the main fibrogenic effectors in response to cholangiocyte damage. JCAD regulates cell proliferation and malignant transformation in nonalcoholic steatoheaptitis-associated hepatocellular carcinoma (NASH-HCC). However, its participation in cholestatic fibrosis has not been explored yet. METHODS: Serial sections of liver tissue of PBC patients were stained with immunofluorescence. Hepatic fibrosis was induced by bile duct ligation (BDL) in wild-type (WT), global JCAD knockout mice (JCAD-KO) and HSC-specific JCAD knockout mice (HSC-JCAD-KO), and evaluated by histopathology and biochemical tests. In situ-activated HSCs isolated from BDL mice were used to determine effects of JCAD on HSC activation. RESULTS: In consistence with staining of liver sections from PBC patients, immunofluorescent staining revealed that JCAD expression was identified in smooth muscle α-actin (α-SMA)-positive fibroblast-like cells and was significantly up-regulated in WT mice with BDL. JCAD deficiency remarkably ameliorated BDL-induced hepatic injury and fibrosis, as documented by liver hydroxyproline content, when compared to WT mice with BDL. Histopathologically, collagen deposition was dramatically reduced in both JCAD-KO and HSC-JCAD-KO mice compared to WT mice, as visualized by Trichrome staining and semi-quantitative scores. Moreover, JCAD deprivation significantly attenuated in situ HSC activation and reduced expression of fibrotic genes after BDL. CONCLUSION: JCAD deficiency effectively suppressed hepatic fibrosis induced by BDL in mice, and the underlying mechanisms are largely through suppressed Hippo-YAP signaling activity in HSCs.


Asunto(s)
Carcinoma Hepatocelular , Moléculas de Adhesión Celular , Colestasis , Neoplasias Hepáticas , Animales , Humanos , Ratones , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Colestasis/complicaciones , Colestasis/metabolismo , Colestasis/patología , Células Estrelladas Hepáticas/metabolismo , Hígado/patología , Cirrosis Hepática/etiología , Cirrosis Hepática/metabolismo , Neoplasias Hepáticas/patología , Ratones Noqueados , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo
9.
Sci Rep ; 14(1): 2145, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273071

RESUMEN

Ductular reactive (DR) cells exacerbate cholestatic liver injury and fibrosis. Herein, we posit that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) emanates from recruited macrophages and restrains DR cell expansion, thereby limiting cholestatic liver injury. Wild type (WT), Trailfl/fl and myeloid-specific Trail deleted (TrailΔmye) C57BL/6 mice were exposed to DDC diet-induced cholestatic liver injury, which induced hepatomegaly and liver injury as compared to control diet-fed mice. However, parameters of liver injury, fibrosis, and inflammation were all increased in the TrailΔmye mice as compared to the WT and Trailfl/fl mice. High dimensional mass cytometry indicated that cholestasis resulted in increased hepatic recruitment of subsets of macrophages and neutrophils in the TrailΔmye mice. Spatial transcriptomics analysis revealed that the PanCK+ cholangiocytes from TrailΔmye mice had increased expression of the known myeloid attractants S100a8, Cxcl5, Cx3cl1, and Cxcl1. Additionally, in situ hybridization of Cxcl1, a potent neutrophil chemoattractant, demonstrated an increased expression in CK19+ cholangiocytes of TrailΔmye mice. Collectively, these data suggest that TRAIL from myeloid cells, particularly macrophages, restrains a subset of DR cells (i.e., Cxcl1 positive cells), limiting liver inflammation and fibrosis. Reprogramming macrophages to express TRAIL may be salutary in cholestasis.


Asunto(s)
Colestasis , Hígado , Animales , Ratones , Apoptosis/genética , Colestasis/metabolismo , Fibrosis , Ligandos , Hígado/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Factor de Necrosis Tumoral alfa/metabolismo
10.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1433-1454, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37736835

RESUMEN

Cholestasis describes bile secretion or flow impairment, which is clinically manifested with fatigue, pruritus, and jaundice. Neutrophils play a crucial role in many diseases such as cholestasis liver diseases through mediating several oxidative and inflammatory pathways. Data have been collected from clinical, in vitro, and in vivo studies published between 2000 and December 2021 in English and obtained from the PubMed, Google Scholar, Scopus, and Cochrane libraries. Although nitric oxide plays an important role in the pathogenesis of cholestatic liver diseases, excessive levels of NO in serum and affected tissues, mainly synthesized by the inducible nitric oxide synthase (iNOS) enzyme, can exacerbate inflammation. NO induces the inflammatory and oxidative processes, which finally leads to cell damage. We found that natural products such as baicalin, curcumin, resveratrol, and lycopene, as well as chemical likes ursodeoxycholic acid, dexamethasone, rosuvastatin, melatonin, and sildenafil, are able to markedly attenuate the NO production and iNOS expression, mainly through inducing the nuclear factor κB (NF-κB), Janus kinase and signal transducer and activator of transcription (JAK/STAT), and toll like receptor-4 (TLR4) signaling pathways. This study summarizes the latest scientific data about the bile acid signaling pathway, the neutrophil chemotaxis recruitment process during cholestasis, and the role of NO in cholestasis liver diseases. Literature review directed us to propose that suppression of NO and its related pathways could be a therapeutic option for preventing or treating cholestatic liver diseases.


Asunto(s)
Colestasis , Hepatopatías , Humanos , Óxido Nítrico/metabolismo , Colestasis/metabolismo , Transducción de Señal , FN-kappa B/metabolismo , Hepatopatías/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Hígado/metabolismo
11.
J Pineal Res ; 76(1): e12929, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38047407

RESUMEN

Cholestatic liver disease is characterized by disturbances in the intestinal microbiota and excessive accumulation of toxic bile acids (BA) in the liver. Melatonin (MT) can improve liver diseases. However, the underlying mechanism remains unclear. This study aimed to explore the mechanism of MT on hepatic BA synthesis, liver injury, and fibrosis in 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-fed and Mdr2-/- mice. MT significantly improved hepatic injury and fibrosis with a significant decrease in hepatic BA accumulation in DDC-fed and Mdr2-/- mice. MT reprogramed gut microbiota and augmented fecal bile salt hydrolase activity, which was related to increasing intestinal BA deconjugation and fecal BA excretion in both DDC-fed and Mdr2-/- mice. MT significantly activated the intestinal farnesoid X receptor (FXR)/fibroblast growth factor 15 (FGF-15) axis and subsequently inhibited hepatic BA synthesis in DDC-fed and Mdr2-/- mice. MT failed to improve DDC-induced liver fibrosis and BA synthesis in antibiotic-treated mice. Furthermore, MT provided protection against DDC-induced liver injury and fibrosis in fecal microbiota transplantation mice. MT did not decrease liver injury and fibrosis in DDC-fed intestinal epithelial cell-specific FXR knockout mice, suggesting that the intestinal FXR mediated the anti-fibrosis effect of MT. In conclusion, MT ameliorates cholestatic liver diseases by remodeling gut microbiota and activating intestinal FXR/FGF-15 axis-mediated inhibition of hepatic BA synthesis and promotion of BA excretion in mice.


Asunto(s)
Colestasis , Hepatopatías , Melatonina , Ratones , Animales , Melatonina/farmacología , Melatonina/metabolismo , Hígado/metabolismo , Colestasis/tratamiento farmacológico , Colestasis/metabolismo , Colestasis/patología , Hepatopatías/metabolismo , Hepatopatías/patología , Ácidos y Sales Biliares/metabolismo , Ácidos y Sales Biliares/farmacología , Ratones Noqueados , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Ratones Endogámicos C57BL
12.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166926, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37956602

RESUMEN

BACKGROUND: In intrahepatic cholestasis of pregnancy (ICP), there are elevated maternal serum levels of total bile acids, progesterone, and some sulfated metabolites, such as allopregnanolone sulfate, which inhibits canalicular function. AIM: To investigate the relationship between cholestasis and the expression of crucial enzymes involved in progesterone metabolism in the liver and placenta. METHODS: Obstructive cholestasis was induced by bile duct ligation (BDL). RT-qPCR (mRNA) and western blot (protein) were used to determine expression levels. Srd5a1 and Akr1c2 enzymatic activities were assayed by substrate disappearance (progesterone and 5α-dihydroprogesterone, respectively), measured by HPLC-MS/MS. RESULTS: BDL induced decreased Srd5a1 and Akr1c2 expression and activity in rat liver, whereas both enzymes were up-regulated in rat placenta. Regarding sulfotransferases, Sult2b1 was also moderately up-regulated in the liver. In placenta from ICP patients, SRD5A1 and AKR1C2 expression was elevated, whereas both genes were down-regulated in liver biopsies collected from patients with several liver diseases accompanied by cholestasis. SRD5A1 and AKR1C2 expression was not affected by incubating human hepatoma HepG2 cells with FXR agonists (chenodeoxycholic acid and GW4064). Knocking-out Fxr in mice did not reduce Srd5a1 and Akr1c14 expression, which was similarly down-regulated by BDL. CONCLUSION: SRD5A1 and AKR1C2 expression was markedly altered by cholestasis. This was enhanced in the placenta but decreased in the liver, which is not mediated by FXR. These results suggest that the excess of progesterone metabolites in the serum of ICP patients can involve both enhanced placental production and decreased hepatic clearance. The latter may also occur in other cholestatic conditions.


Asunto(s)
Colestasis , Placenta , Embarazo , Humanos , Femenino , Ratones , Ratas , Animales , Placenta/metabolismo , Progesterona/metabolismo , Espectrometría de Masas en Tándem , Hígado/metabolismo , Colestasis/metabolismo
13.
Bioorg Chem ; 143: 106979, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37995646

RESUMEN

FXR agonistic activity screening was conducted based on natural product resources containing 38 structurally diverse sesquiterpenoids isolated from Xylopia vielana. Among them, 34 undescribed sesquiterpenoids with 5 different skeleton types were first characterized by HRESIMS, NMR data, ECD calculations and X-ray crystallographic analysis. High-content screening for FXR agonistic activity of these compounds demonstrated that 13 compounds could activate FXR. Then molecular docking results suggested that hydrogen bonding and hydrophobic interactions might contribute to the main interaction of active compounds with FXR. The preliminary structure-activity relationships (SARs) of those isolates were also discussed. The most potent compound 27 significantly elevated the transcriptional activity of the FXR target gene BSEP promoter (EC50 = 14.26 µM) by a dual-luciferase reporter assay. Western blotting indicated that compound 27 activated the FXR-associated pathway, thereby upregulating SHP and BSEP expression, and downregulating CYP7A1 and NTCP expression. We further revealed that FXR was the target protein of compound 27 through diverse target validation methods, including CETSA, SIP, and DARTS under the intervention of temperature, organic reagents and protease. Pharmacological in vivo experiments showed that compound 27 effectively ameliorated α-naphthyl isothiocyanate (ANIT)-induced cholestasis in mice, as evidenced by the ameliorative histopathology of the liver and the decrease in biochemical markers: alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total bilirubin (TBIL), direct bilirubin (DBIL), and total bile acid (TBA). This work showed a practical strategy for the discovery of new FXR agonists from natural products and provided potential insights for sesquiterpenoids as FXR agonist lead compounds.


Asunto(s)
Colestasis , Sesquiterpenos , Ratones , Animales , Simulación del Acoplamiento Molecular , Hígado/metabolismo , Colestasis/genética , Colestasis/metabolismo , Colestasis/prevención & control , Ácidos y Sales Biliares/metabolismo , Bilirrubina/metabolismo , Sesquiterpenos/farmacología
14.
J Hepatol ; 80(2): 268-281, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37939855

RESUMEN

BACKGROUND & AIMS: Cholemic nephropathy (CN) is a severe complication of cholestatic liver diseases for which there is no specific treatment. We revisited its pathophysiology with the aim of identifying novel therapeutic strategies. METHODS: Cholestasis was induced by bile duct ligation (BDL) in mice. Bile flux in kidneys and livers was visualized by intravital imaging, supported by MALDI mass spectrometry imaging and liquid chromatography-tandem mass spectrometry. The effect of AS0369, a systemically bioavailable apical sodium-dependent bile acid transporter (ASBT) inhibitor, was evaluated by intravital imaging, RNA-sequencing, histological, blood, and urine analyses. Translational relevance was assessed in kidney biopsies from patients with CN, mice with a humanized bile acid (BA) spectrum, and via analysis of serum BAs and KIM-1 (kidney injury molecule 1) in patients with liver disease and hyperbilirubinemia. RESULTS: Proximal tubular epithelial cells (TECs) reabsorbed and enriched BAs, leading to oxidative stress and death of proximal TECs, casts in distal tubules and collecting ducts, peritubular capillary leakiness, and glomerular cysts. Renal ASBT inhibition by AS0369 blocked BA uptake into TECs and prevented kidney injury up to 6 weeks after BDL. Similar results were obtained in mice with humanized BA composition. In patients with advanced liver disease, serum BAs were the main determinant of KIM-1 levels. ASBT expression in TECs was preserved in biopsies from patients with CN, further highlighting the translational potential of targeting ASBT to treat CN. CONCLUSIONS: BA enrichment in proximal TECs followed by oxidative stress and cell death is a key early event in CN. Inhibiting renal ASBT and consequently BA enrichment in TECs prevents CN and systemically decreases BA concentrations. IMPACT AND IMPLICATIONS: Cholemic nephropathy (CN) is a severe complication of cholestasis and an unmet clinical need. We demonstrate that CN is triggered by the renal accumulation of bile acids (BAs) that are considerably increased in the systemic blood. Specifically, the proximal tubular epithelial cells of the kidney take up BAs via the apical sodium-dependent bile acid transporter (ASBT). We developed a therapeutic compound that blocks ASBT in the kidneys, prevents BA overload in tubular epithelial cells, and almost completely abolished all disease hallmarks in a CN mouse model. Renal ASBT inhibition represents a potential therapeutic strategy for patients with CN.


Asunto(s)
Proteínas Portadoras , Colestasis , Enfermedades Renales , Hepatopatías , Glicoproteínas de Membrana , Transportadores de Anión Orgánico Sodio-Dependiente , Simportadores , Humanos , Ratones , Animales , Colestasis/complicaciones , Colestasis/metabolismo , Riñón/metabolismo , Simportadores/metabolismo , Ácidos y Sales Biliares/metabolismo , Hígado/metabolismo , Conductos Biliares/metabolismo , Hepatopatías/metabolismo , Sodio
15.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 395-410, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37452836

RESUMEN

In the current study, the therapeutic effectiveness of the metformin (Met) and melatonin (Mel) co-loaded liposomes was investigated on cholestasis induced by bile duct ligation (BDL) in male rats. Histopathological analysis, biochemical analysis, and oxidative stress markers were assayed to determine the therapeutic effect of Met and Mel co-loaded liposomes on cholestasis. Histopathological analysis revealed that the simultaneous administration of Met and Mel, whether in the free (C-Mel-Met) or liposomal (C-Lipo-Mel-Met) forms, reduced inflammation as well as proliferation of bile ducts; however, results were more prominent in the liposomal form of Mel and Met. Additionaly, serum levels of aspartate aminotransferase (AST) were significantly (p < 0.001) higher in (C-Mel-Met) treated rats compared with (BDL) rats; however, (C-Lipo-Mel-Met) treated rats exhibited significant (p < 0.05) lower AST rates in comparison to (BDL) rats. Moreover, a significant (p < 0.0001) drop in bilirubin levels was detected in (C-Lipo-Mel-Met) treated rats in comparison to (BDL) rats; it is noteworthy mentioning that bilirubin levels in (C-Lipo-Mel-Met) treated rats were insignificant in comparison to sham-control (SC) rats. Furthermore, rats concomitantly administered Met and Mel, exhibited significant downregulation in the expression levels of inflammatory cytokine genes such as TNF-α and IL-1 gene expression, where the downregulation was more prominent in the liposomal from. Our findings demonestrate that the concomitant administration of metformin and melatonin in the liposomal form had more therapeutic effect on liver injury than their free forms through improving histological changes, reducing biochemical markers and favoring oxidant- antioxidant balance.


Asunto(s)
Colestasis , Hepatopatías , Melatonina , Metformina , Ratas , Masculino , Animales , Melatonina/farmacología , Melatonina/uso terapéutico , Metformina/farmacología , Metformina/uso terapéutico , Liposomas , Conductos Biliares/cirugía , Colestasis/tratamiento farmacológico , Colestasis/metabolismo , Hepatopatías/tratamiento farmacológico , Bilirrubina
16.
Aging Dis ; 15(1): 338-356, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37307826

RESUMEN

Primary sclerosing cholangitis (PSC) represents a chronic liver disease characterized by poor prognosis and lacking causal treatment options. Yes-associated protein (YAP) functions as a critical mediator of fibrogenesis; however, its therapeutic potential in chronic biliary diseases such as PSC remains unestablished. The objective of this study is to elucidate the possible significance of YAP inhibition in biliary fibrosis by examining the pathophysiology of hepatic stellate cells (HSC) and biliary epithelial cells (BEC). Human liver tissue samples from PSC patients were analyzed to assess the expression of YAP/connective tissue growth factor (CTGF) relative to non-fibrotic control samples. The pathophysiological relevance of YAP/CTGF in HSC and BEC was investigated in primary human HSC (phHSC), LX-2, H69, and TFK-1 cell lines through siRNA or pharmacological inhibition utilizing verteporfin (VP) and metformin (MF). The Abcb4-/- mouse model was employed to evaluate the protective effects of pharmacological YAP inhibition. Hanging droplet and 3D matrigel culture techniques were utilized to investigate YAP expression and activation status of phHSC under various physical conditions. YAP/CTGF upregulation was observed in PSC patients. Silencing YAP/CTGF led to inhibition of phHSC activation and reduced contractility of LX-2 cells, as well as suppression of epithelial-mesenchymal transition (EMT) in H69 cells and proliferation of TFK-1 cells. Pharmacological inhibition of YAP mitigated chronic liver fibrosis in vivo and diminished ductular reaction and EMT. YAP expression in phHSC was effectively modulated by altering extracellular stiffness, highlighting YAP's role as a mechanotransducer. In conclusion, YAP regulates the activation of HSC and EMT in BEC, thereby functioning as a checkpoint of fibrogenesis in chronic cholestasis. Both VP and MF demonstrate effectiveness as YAP inhibitors, capable of inhibiting biliary fibrosis. These findings suggest that VP and MF warrant further investigation as potential therapeutic options for the treatment of PSC.


Asunto(s)
Colestasis , Células Estrelladas Hepáticas , Ratones , Animales , Humanos , Cirrosis Hepática/tratamiento farmacológico , Fibrosis , Colestasis/metabolismo , Conductos Biliares , Epitelio/metabolismo
17.
Am J Pathol ; 194(3): 369-383, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38104651

RESUMEN

Macrophage autophagy dysfunction aggravates liver injury by activating inflammasomes, which can cleave pro-IL-1ß to its active, secreted form. We investigated whether the vitamin D/vitamin D receptor (VDR) axis could up-regulate macrophage autophagy function to inhibit the activation of inflammasome-dependent IL-1ß during cholestasis. Paricalcitol (PAL; VDR agonist) was intraperitoneally injected into bile duct-ligated mice for 5 days. Up-regulation of VDR expression by PAL reduced liver injury by reducing the oxidative stress-induced inflammatory reaction in macrophages. Moreover, PAL inhibited inflammasome-dependent IL-1ß generation. Mechanistically, the knockdown of VDR increased IL-1ß generation, whereas VDR overexpression exerted the opposite effect following tert-butyl hydroperoxide treatment. The inflammasome antagonist glyburide, the caspase-1-specific inhibitor YVAD, and the reactive oxygen species (ROS) scavenger N-acetyl-l-cysteine (NAC) blocked the increase in Vdr shRNA-induced IL-1ß production. Interestingly, up-regulation of VDR also enhanced macrophage autophagy. Autophagy reduction impaired the up-regulation of VDR-inhibited macrophage inflammasome-generated IL-1ß, whereas autophagy induction showed a synergistic effect with VDR overexpression through ROS-p38 mitogen-activated protein kinase (MAPK) pathway. This result was confirmed by p38 MAPK inhibitor, MAPK activator, and ROS inhibitor NAC. Collectively, PAL triggered macrophage autophagy by suppressing activation of the ROS-p38 MAPK pathway, which, in turn, suppressed inflammasome-generated cleaved, active forms of IL-1ß, eventually leading to reduced inflammation. Thus, triggering the VDR may be a potential target for the anti-inflammatory treatment of cholestatic liver disease.


Asunto(s)
Colestasis , Inflamasomas , Animales , Ratones , Acetilcisteína , Autofagia/fisiología , Colestasis/metabolismo , Inflamasomas/metabolismo , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Calcitriol/metabolismo
18.
Biol Pharm Bull ; 46(12): 1810-1819, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38044100

RESUMEN

Yinzhihuang (YZH), a traditional Chinese medicine prescription, was widely used to treat cholestasis. Cholestatic liver injury limited the use of the immunosuppressive drug cyclosporine A (CsA) in preventing organ rejection after solid organ transplantation. Clinical evidences suggested that YZH could enhance bile acids and bilirubin clearance, providing a potential therapeutic strategy against CsA-induced cholestasis. Nevertheless, it remains unclear whether YZH can effectively alleviate CsA-induced cholestatic liver injury, as well as the molecular mechanisms responsible for its hepatoprotective effects. The purpose of the present study was to investigate the hepatoprotective effects of YZH on CsA-induced cholestatic liver injury and explore its molecular mechanisms in vivo and vitro. The results demonstrated that YZH significantly improved the CsA-induced cholestatic liver injury and reduced the level of liver function markers in serum of Sprague-Dawley (SD) rats. Targeted protein and gene analysis indicated that YZH increased bile acids and bilirubin efflux into bile through the regulation of multidrug resistance-associated protein 2 (Mrp2), bile salt export pump (Bsep), sodium taurocholate cotransporting polypeptide (Ntcp) and organic anion transporting polypeptide 2 (Oatp2) transport systems, as well as upstream nuclear receptors farnesoid X receptor (Fxr). Moreover, YZH modulated enzymes involved in bile acids synthesis and bilirubin metabolism including Cyp family 7 subfamily A member 1 (Cyp7a1) and uridine 5'-diphosphate (UDP) glucuronosyltransferase family 1 member A1 (Ugt1a1). Furthermore, the active components geniposidic acid, baicalin and chlorogenic acid exerted regulated metabolic enzymes and transporters in LO2 cells. In conclusion, YZH may prevent CsA-induced cholestasis by regulating the transport systems, metabolic enzymes, and upstream nuclear receptors Fxr to restore bile acid and bilirubin homeostasis. These findings highlight the potential of YZH as a therapeutic intervention for CsA-induced cholestasis and open avenues for further research into its clinical applications.


Asunto(s)
Colestasis , Ciclosporina , Ratas , Animales , Ciclosporina/efectos adversos , Ratas Sprague-Dawley , Hígado/metabolismo , Colestasis/inducido químicamente , Colestasis/tratamiento farmacológico , Colestasis/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ácidos y Sales Biliares/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Bilirrubina/metabolismo
19.
BMC Microbiol ; 23(1): 357, 2023 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980506

RESUMEN

BACKGROUND: Infantile cholestasis (IC) is the most common hepatobiliary disease in infants, resulting in elevated direct bilirubin levels. Indeed, hepatointestinal circulation impacts bile acid and bilirubin metabolism. This study evaluates changes in the gut microbiota composition in children with IC and identifies abnormal metabolite profiles associated with microbial alterations. RESULTS: The gut microbiota in the IC group exhibits the higher abundance of Veillonella, Streptococcus and Clostridium spp. (P < 0.05), compared to healthy infants (CON) group. Moreover, the abundance of Ruminococcus, Vibrio butyricum, Eubacterium coprostanogenes group, Intestinibacter, and Faecalibacterium were lower (P < 0.05). In terms of microbiota-derived metabolites, the levels of fatty acids (palmitoleic, α-linolenic, arachidonic, and linoleic) (P < 0.05) increased and the levels of amino acids decreased in IC group. Furthermore, the abundances of Ruminococcus, Eubacterium coprostanoligenes group, Intestinibacter and Butyrivibrio are positively correlated with proline, asparagine and aspartic acid, but negatively correlated with the α-linolenic acid, linoleic acid, palmitoleic acid and arachidonic acid. For analysis of the relationship between the microbiota and clinical index, it was found that the abundance of Veillonella and Streptococcus was positively correlated with serum bile acid content (P < 0.05), while APTT, PT and INR were negatively correlated with Faecalibalum and Ruminococcus (P < 0.05). CONCLUSION: Microbiota dysbiosis happened in IC children, which also can lead to the abnormal metabolism, thus obstructing the absorption of enteral nutrition and aggravating liver cell damage. Veillonella, Ruminococcus and Butyrivibrio may be important microbiome related with IC and need further research.


Asunto(s)
Colestasis , Microbioma Gastrointestinal , Lactante , Niño , Humanos , Colestasis/metabolismo , Hígado/metabolismo , Streptococcus , Bilirrubina/metabolismo , Ácidos y Sales Biliares/metabolismo
20.
Eur J Pharmacol ; 961: 176193, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37981257

RESUMEN

Bile acid (BA)-induced apoptosis is a common pathologic feature of cholestatic liver injury. Glycyrrhetinic acid (GA) is the hepatoprotective constituent of licorice. In the present study, the anti-apoptotic potential of GA was investigated in wild type and macrophage-depleted C57BL/6 mice challenged with alpha-naphthyl isothiocyanate (ANIT), and hepatocytes stimulated with Taurocholic acid (TCA) or Tumor necrosis factor-alpha (TNF-α). Apoptosis was determined by TUNEL positive cells and expression of executioner caspases. Firstly, we found that GA markedly alleviated liver injury, accompanied with reduced positive TUNEL-staining cells, and expression of caspases 3, 8 and 9 in mice modeled with ANIT. Secondly, GA mitigated apoptosis in macrophage-depleted mice with exacerbated liver injury and augmented cell apoptosis. In vitro study, pre-treatment with GA reduced the expression of activated caspases 3 and 8 in hepatocytes stimulated with TCA, but not TNF-α. The ability of GA to ameliorate apoptosis was abolished in the presence of Tauroursodeoxycholic Acid (TUDCA), a chemical chaperon against Endoplasmic reticulum stress (ER stress). Furthermore, GA attenuated the over-expression of Glucose regulated protein 78 (GRP78), and blocked all three branches of Unfolded protein reaction (UPR) in cholestatic livers of mice induced by ANIT. GA also downregulated C/EBP homologous protein (CHOP) expression, accompanied with reduced expression of Death receptor 5 (DR5) and activation of caspase 8 in both ANIT-modeled mice and TCA-stimulated hepatocytes. The results indicate that GA inhibits ER stress-induced hepatocyte apoptosis in cholestasis, which correlates with blocking CHOP/DR5/Caspase 8 pathway.


Asunto(s)
Colestasis , Ácido Glicirretínico , Ratones , Animales , Ácido Glicirretínico/farmacología , Ácido Glicirretínico/uso terapéutico , Caspasa 8/metabolismo , Ratones Endogámicos C57BL , Colestasis/metabolismo , Apoptosis , Estrés del Retículo Endoplásmico , Hepatocitos/metabolismo , Factor de Transcripción CHOP/metabolismo , Caspasas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...